The paper reports new observations of strain localisation following dynamic impact. Two dimensional physical model tests have been performed to investigate the response of dry granular soils to the impact of a free falling steel plate. The tests have been performed to study the mechanics of the densification of soils during dynamic compaction, which is a widely used process to improve the performance of deep soil deposits by repeated dropping of large weights onto the ground surface. High speed photography and digital image correlation techniques have enabled the deformation patterns, soil strains and strain localisations to be observed. Tests have been performed on sand with a range of densities and a sand–silt mixture. The results have shown that the soil deformations are comprised of a conventional bearing capacity mechanism at the surface and a series of compaction bands that propagate downwards beneath the impacting plate. Similar patterns are observed in all tests, however as the compressibility of the soil increases the contribution from the bearing capacity mechanism decreases.
Read full abstract