In the Athabasca oil sands region (AOSR) of Northern Alberta, the dry deposition of sulphur and nitrogen compounds represents a major fraction of total (wet plus dry) deposition due to oil sands emissions. The leaf area index (LAI) is a critical parameter that affects the dry deposition of these gaseous and particulate compounds to the surrounding boreal forest canopy. For this study, LAI values based on Moderate Resolution Imaging Spectroradiometer satellite imagery were obtained and compared to ground-based measurements, and two limitations with the satellite data were identified. The satellite LAI data firstly represents one-sided LAI values that do not account for the enhanced LAI associated with needle leaf geometry, and secondly, underestimates LAI in winter-time northern latitude regions. An approach for adjusting satellite LAI values for different boreal forest cover types, as a function of time of year, was developed to produce more representative LAI values that can be used by air quality sulphur and nitrogen deposition models. The application of the approach increases the AOSR average LAI for January from 0.19 to 1.40, which represents an increase of 637%. Based on the application of the CALMET/CALPUFF model system, this increases the predicted regional average dry deposition of sulphur and nitrogen compounds for January by factors of 1.40 to 1.30, respectively. The corresponding AOSR average LAI for July increased from 2.8 to 4.0, which represents an increase of 43%. This increases the predicted regional average dry deposition of sulphur and nitrogen compounds for July by factors of 1.28 to 1.22, respectively. These findings reinforce the importance of the LAI metric for predicting the dry deposition of sulphur and nitrogen compounds. While satellite data can provide enhanced spatial and temporal resolution, adjustments are identified to overcome associated limitations. This work is considered to have application for other deposition model studies where dry deposition represents a significant fraction of total deposition.
Read full abstract