Biomimetic micro-hexagonal-textured surfaces have sparked interest for their application in fields that demand high friction and adhesion, such as micro-robotics and biomedicine. Despite extensive research conducted on this specific microstructure, its friction behavior against soft counterfaces remains a topic that has not been fully investigated yet. This study examines how micro-hexagon textures behave when they come into contact with engineered and biological materials like gelatin and chicken skin in dry and wet conditions. The results show clearly that under dry contact conditions, flat surfaces generate higher friction compared to hexagon micropattern surfaces. Under wet conditions, hexagon micropattern surfaces generate higher friction compared to flat surfaces. In wet conditions specifically, the static coefficient of friction is up to 13 times greater than that of a flat specimen against glass, up to 11 times greater against gelatin, and up to 6 times greater against chicken skin. For the dynamic coefficient of friction, the patterned surface demonstrates a maximum increase by a factor of 28 against glass, 11 against gelatin, and 5 against chicken skin. These results further develop our knowledge of these hexagon micropattern surfaces and pave the way for their utilization in future technological advancements in which soft and wet counterfaces are to be considered, such as in biomedical applications that can benefit from increased friction in wet conditions for better control and stability.