The current study was designed to explore the biosynthetic potential of sevadicin in Bacillus pumilus species and its interaction with bacterial drug target molecules. The non-ribosomal peptide (NRP) cluster in B. pumilus SF-4 was preliminarily confirmed using PCR-based screening, and the bioactivity of strain SF-4 culture extract was assessed against a set of human pathogenic strains. The susceptibility assay showed that strain SF-4 extract had higher inhibitory concentrations (312-375µg/mL) than ciprofloxacin. Genome mining of B. pumilus strains (n = 22) using AntiSMASH and BAGEL identified sevadicin coding biosynthetic gene cluster only in strain SF-4, constitutes of two core biosynthetic genes, three additional biosynthetic genes, two transport-related genes, and one regulatory gene. The molecular docking of sevadicin with various putative bacterial drug targets such as dihydropteroate, muramyl ligase E, topoisomerase, penicillin-binding protein, and in vitro safety analyses were conducted with detailed ADMET screening. The results showed that sevadicin makes hydrophobic interaction with MurE (PDB ID: 1E8C and 4C13) via hydrogen bonding, suggesting bacterial growth inhibition by disrupting the cell wall synthesis pathway and exhibiting a secure biosafety profile. The stability and compactness of sevadicin/MurE complexes were assessed via molecular dynamic simulation using RMSD, RMSF, and Rg. The simulation results revealed the binding stability of sevadicin/MurE complexes and indicated that the complexes can't be easily deformed. In conclusion, the current study explored the biosynthesis of sevadicin in B. pumilus for the first time and found that sevadicin inhibits bacterial growth by inhibiting cell wall synthesis via targeting the MurE enzyme and exhibits no toxicity.
Read full abstract