ABSTRACTForensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.
Read full abstract