Abstract
ABSTRACTForensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.