The clinical diagnosis of pathogen infectious diseases increasingly requires sensitive and rapid RNA detection technologies. The RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system has shown immense potential in molecular diagnostics due to its trans-cleavage activity. However, most Cas13a-based detection methods require an amplicon transcription step, and the multi-step open-tube operations are prone to contamination, limiting their widespread application. Here, we propose an ultrasensitive (single-copy range, ∼aM) and rapid (within 40 min) isothermal one-pot RNA detection platform, termed SATCAS (Simultaneous Amplification and Testing platform based on Cas13a). This method effectively distinguishes viable bacteria (0%–100%) under constant total bacterial conditions, demonstrating its robustness and universality. SATCAS excels in identifying single nucleotide polymorphisms (SNPs), particularly detecting 0.5% drug-resistant mutations. We validated SATCAS by detecting infections in biological samples from 68 HBV, 23 EBV, and 48 SARS-CoV-2 patients, achieving 100% sensitivity, 92.86% specificity, and 97.06% accuracy in HBV infection testing. We anticipate that SATCAS has broad application potential in the early diagnosis, subtyping, drug resistance detection, and point-of-care monitoring of pathogen infectious diseases.
Read full abstract