Background: Brucellosis impact both animals and humans worldwide. However, using antibiotics for brucellosis remains controversial despite decades of research. Relapse can complicate treatment in this area. Since the mid-1980s, microbiologists, and physicians have studied fluoroquinolones' use for treating human brucellosis. The principal advantages of fluoroquinolones are their intracellular antimicrobial activity, low nephrotoxicity, good pharmacokinetics, and the lack of drug-level monitoring. Fluoroquinolones inhibit disease recurrence. In vitro and clinical data were used to study the prevalence of Brucella melitensis and Brucella abortus fluoroquinolone-resistant isolates. Methods: The PubMed, Scopus, Embase, and Web of Science databases were carefully searched until August 6, 2022, for relevant papers. The number of resistant isolates and sample size were used to estimate the proportion of resistant isolates, fitting a model with random effects, and DerSimonian-Laird estimated heterogeneity. Furthermore, meta-regression and subgroup analyses were used to assess the moderators to identify the sources of heterogeneity. Meta-analysis was performed using R software. Results: Forty-seven studies evaluated fluoroquinolone resistance in Brucella spp. Isolates. Fluoroquinolones have shown high in vitro efficacy against Brucella spp. The resistance rates to ofloxacin, sparfloxacin, fleroxacin, pefloxacin, and lomefloxacin were 2%, 1.6%, and 4.6%, respectively. Conclusion: Clinical in vitro tests demonstrated that fluoroquinolones can eradicate Brucella spp. Owing to first-line medication resistance, recurrence, and toxicity, it is essential to standardize the Brucella antimicrobial susceptibility test method for a more precise screening of resistance status. Fluoroquinolones are less resistant to fluoroquinolone-based treatments in modern clinical practice as alternatives to standard therapy for patients with brucellosis relapse after treatment with another regimen and in patients who have developed toxicity from older agents.
Read full abstract