The use of radiolabeled compounds is associated with a number of limitations. Therefore, a new method for the radioisotope-free evaluation of antibody distribution using metal labeling and inductively coupled plasma-mass spectrometry (ICP-MS) was developed herein. Indium-labeled monoclonal antibodies were administrated intravenously to tumor-bearing mice and cynomolgus monkeys, and antibody concentrations in plasma and tissues were measured by ICP-MS. The results were compared with those obtained using a ligand binding assay (LBA) and radioisotope-labeled antibody administration. Indium-, terbium-, holmium-, and yttrium-labeled cetuximab were co-administered to one C57BL/6J mouse for simultaneous PK and tissue distribution evaluations. The administration of a radioactive or non-radioactive indium-labeled anti-human interleukin-6 receptor (hIL-6R) antibody to tumor-bearing hIL-6R transgenic mice resulted in similar plasma antibody concentration-time profiles by ICP-MS, a ligand binding assay (LBA), and gamma-ray detector. Liver, kidney, brain, spleen, and tumor concentrations of antibodies measured by ICP-MS were similar to those after the administration of radiolabeled anti-hIL-6R antibodies. Following the administration of indium-labeled cetuximab to cynomolgus monkeys, plasma antibody concentrations measured by ICP-MS were similar to those measured by LBA, and antibody concentrations in organs were evaluable by ICP-MS. The PK of all metals were similar to antibody PK evaluated by LBA, and concentrations in each tissue were equivalent among metals. The assessment of antibody distribution using ICP-MS is a novel alternative to the traditional radiolabeled approach. It facilitates the assessment of antibody distribution in the early stages of drug discovery and accelerates the assessment of target engagement.
Read full abstract