In this review, we discuss the effectiveness of drug delivery system based on metal nanoparticles, and also, describe the problems associated with their delivery to tumor cells. Throughout recent years, more reports have appeared in the literature that demonstrate promising results for the treatment of various types of cancer using metal-based nanoparticles. Due to their unique physical and chemical properties, metal nanoparticles are effectively being used for the delivery of drug to the tumor cells, for cancer diagnosis and treatment. They can also be synthesized allowing the control of size and shape. However, the effectiveness of the metal nanoparticles for cancer treatment largely depends on their stability, biocompatibility, and ability to selectively affect tumor cells after their systemic or local administration. Another major problem associated with metal nanoparticles is their ability to overcome tumor tissue barriers such as atypical blood vessel structure, dense and rigid extracellular matrix, and high pressure of tumor interstitial fluid. The review also describes the design of tumor drug delivery systems that are based on metal nanoparticles. The mechanism of action of metal nanoparticles on cancer cells is also discussed. Considering the therapeutic safety and toxicity of metal nanoparticles, the prospects for their use for future clinical applications are being currently reviewed.
Read full abstract