Water stress poses a significant challenge to wheat production, adversely affecting both field productivity and grain quality in the face of climate change and diminishing water resources. It reduces vegetative growth and disrupts physiological processes, which negatively impact yield components like grain size and protein content. Consequently, selecting drought-tolerant varieties is critical for enhancing resilience in arid regions. This study examined ten wheat varieties belonging to the genus Triticum aestivum L. (Abba 99, Adna 99, Baraka, Bohooth 10, Bohooth 22, Jihan 99, Bora, Dijla, Sham 6 and Wafia) under three water stress levels: 0 MPa (S0), -1.48 MPa (S1), and -2.95 MPa (S2) using polyethylene glycol (PEG6000). Phenotypic traits measured included plant height, leaf area, stem diameter, wet and dry weight, along with chlorophyll content. Real-time quantitative Polymerase Chain Reaction (RT-qPCR) was used to assess the expression of SOD and BADH-1 genes. Results indicated that Adana 99 exhibited significant drought resistance, recording the highest measurements in plant height (35 cm), leaf area (15.50 cm²), stem diameter (1.80 mm), wet weight (0.80 g), dry weight (0.55 g) and total chlorophyll content (45.85 and 48.14) at 15 and 30 days, respectively, under S2. The SOD gene expression peaked at 8.57 in S2, an eightfold increase from S0. Similarly, BADH-1 gene expression was recorded at 8 in S2, also an eightfold increase. In contrast, Baraka and Wafia showed the lowest expressions for the SOD (0.001) and BADH-1 (0.002) genes under S2, negatively affecting their phenotypic and physiological traits. These findings underscore the importance of selecting drought-resistant varieties for sustainable productivity under harsh environmental conditions.
Read full abstract