Both calf and Drosophila contain a type II casein kinase with similar molecular structure and catalytic activity. Purified calf thymus casein kinase II is composed of three subunits of Mr = 44,000 (alpha), 40,000 (alpha'), and 26,000 (beta) (Dahmus, M.E. (1981) J. Biol. Chem. 256, 3319-3325), whereas the Drosophila enzyme is composed of two subunits of Mr = 36,700 (alpha) and 28,200 (beta) (Glover, C. V. C., Shelton, E. R., and Brutlag, D. L. (1983) J. Biol. Chem. 258, 3258-3265). The native form of the enzyme is an alpha 2 beta 2 tetramer. Polyclonal antibodies prepared against each enzyme react with both the alpha and beta subunits of the homologous enzyme and cross-react with both subunits of the heterologous enzyme. Reaction of polyclonal antibodies with proteins resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis establishes that no significant difference in subunit molecular weight exists between the purified enzymes and the enzyme present in initial cell extracts. Each antibody effectively inhibits the in vitro activity of the homologous enzyme and causes a slight inhibition in the activity of the heterologous enzyme. Peptide maps derived from purified subunits indicate that the alpha and beta subunits are unique and that there is extensive primary sequence homology between the corresponding subunits of the calf and Drosophila enzyme. Casein kinase II from both sources phosphorylates the same subunits of calf thymus RNA polymerase II and an identical set of proteins in a complex mixture of acid-soluble proteins from Drosophila tissue culture cells. The striking similarity in molecular structure and catalytic activity between the calf and Drosophila enzyme suggests that casein kinase II has been highly conserved in evolution.