Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated. Here, the current-induced magnetic phase transition in a vdW ferromagnet Fe5GeTe2 is reported. Based on magneto-transport measurements and theoretical analysis, it is demonstrated that transition in the interlayer magnetic coupling occurs through vertical voltage drop between layers induced by current which is attributed to high anisotropy of the resistivity caused by the vdW gaps. Such magnetic phase transition results in giant modulation of the longitudinal magnetoresistance from 5% to 170%. The electrical tunability of the magnetic phase in Fe5GeTe2 with current-in-plane geometry opens a path for electric control of magnetic properties, expanding the ability to use vdW magnets for spintronic applications.
Read full abstract