The Asian citrus psyllid (ACP) Diaphorina citri vectors the causative agent of citrus greening disease that has the capacity to decimate citrus production. As an alternative and more sustainable approach to manage D. citri than repeated application of chemical insecticides, we investigated the potential use of the bacteria-derived pesticidal protein, Mpp51Aa1, when delivered by transgenic Citrus sinensis cv. Valencia sweet orange or Citrus paradisi cv. Duncan grapefruit. Following confirmation of transcription and translation of mpp51aa1 by transgenic plants, no impact of Mpp51Aa1 expression was seen on D. citri host plant choice between transgenic and control Duncan grapefruit plants. A slight but significant drop in survival of adult psyllids fed on these transgenic plants was noted relative to those fed on control plants. In line with this result, damage to the gut epithelium consistent with that caused by pore-forming proteins was only observed in a minority of adult D. citri fed on the transgenic Duncan grapefruit. However, greater impacts were observed on nymphs than on adults, with a 40% drop in the survival of nymphs fed on transgenic Duncan grapefruit relative to those fed on control plants. For Valencia sweet orange, a 70% decrease in the number of eggs laid by adult D. citri on transgenic plants was noted relative to those on control plants, with a 90% drop in emergence of progeny. These impacts that contrast with those associated with other bacterial pesticidal proteins and the potential for use of Mpp51Aa1-expressing transgenic plants for suppression of D. citri populations are discussed. IMPORTANCE Pesticidal proteins derived from bacteria such as Bacillus thuringiensis are valuable tools for management of agricultural insect pests and provide a sustainable alternative to the application of chemical insecticides. However, relatively few bacterial pesticidal proteins have been used for suppression of hemipteran or sap-sucking insects such as the Asian citrus psyllid, Diaphorina citri. This insect is particularly important as the vector of the causative agent of citrus greening, or huanglongbing disease, which severely impacts global citrus production. In this study, we investigated the potential of transgenic citrus plants that produce the pesticidal protein Mpp51Aa1. While adult psyllid mortality on transgenic plants was modest, the reduced number of eggs laid by exposed adults and the decreased survival of progeny was such that psyllid populations dropped by more than 90%. These results provide valuable insight for potential deployment of Mpp51Aa1 in combination with other control agents for the management of D. citri.