Drone vision is widely used in change detection, disaster response, and military reconnaissance due to its wide field of view and flexibility. However, under haze and thin cloud conditions, image quality is usually degraded due to atmospheric scattering. This results in issues like color distortion, reduced contrast, and lower clarity, which negatively impact the performance of subsequent advanced visual tasks. To improve the quality of unmanned aerial vehicle (UAV) images, we propose a dehazing method based on calibration of the atmospheric scattering model. We designed two specialized neural network structures to estimate the two unknown parameters in the atmospheric scattering model: the atmospheric light intensity A and medium transmission t. However, calculation errors always occur in both processes for estimating the two unknown parameters. The error accumulation for atmospheric light and medium transmission will cause the deviation in color fidelity and brightness. Therefore, we designed an encoder-decoder structure for irradiance guidance, which not only eliminates error accumulation but also enhances the detail in the restored image, achieving higher-quality dehazing results. Quantitative and qualitative evaluations indicate that our dehazing method outperforms existing techniques, effectively eliminating haze from drone images and significantly enhancing image clarity and quality in hazy conditions. Specifically, the compared experiment on the R100 dataset demonstrates that the proposed method improved the peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM) metrics by 6.9 dB and 0.08 over the second-best method, respectively. On the N100 dataset, the method improved the PSNR and SSIM metrics by 8.7 dB and 0.05 over the second-best method, respectively.