A driver warning system can improve pedestrian safety by providing drivers with alerts about potential hazards. Most driver warning systems have primarily focused on detecting the presence of pedestrians, without considering other factors, such as the pedestrian’s gender and speed, and whether pedestrians are carrying luggage, that can affect driver braking behavior. Therefore, this study aims to investigate how driver braking behavior changes based on the information about the number of pedestrians in a crowd and examine if a developed warning system based on this information can induce safe braking behavior. For this purpose, an experiment scenario was conducted using a virtual reality-based driving simulator and an eye tracker. The collected driver data were analyzed using mixed ANOVA to derive meaningful conclusions. The research findings indicate that providing information about the number of pedestrians in a crowd has a positive impact on driver braking behavior, including deceleration, yielding intention, and attention. Particularly, It was found that in scenarios with a larger number of pedestrians, the Time to Collision (TTC) and distance to the crosswalk were increased by 12%, and the pupil diameter was increased by 9%. This research also verified the applicability of the proposed warning system in complex road environments, especially under conditions with poor visibility such as nighttime. The system was able to induce safe braking behavior even at night and exhibited consistent performance regardless of gender. In conclusion, considering various factors that influence driver behavior, this research provides a comprehensive understanding of the potential and effectiveness of a driver warning system based on information about the number of pedestrians in a crowd in complex road environments.