A single nucleotide variant in mitochondrial DNA (mtDNA) 1555A>G is associated with drug-induced hearing loss. For the 1555A>G mutation site, 1555A wild-type and 1555G mutant-type plasmids were constructed, respectively. In this study, a PCR method based on the TaqMan amplification refractory mutation system was proposed to detect mtDNA 1555A>G. A common upstream primer, a common TaqMan probe, and two downstream allele-specific primers with mismatched bases were designed. One-step amplification and detection of the wild-type and mutant type at the 1555 site were realized for the deafness-related gene through two reactions. Based on this detection method, the minimum detection limit of the wild-type and mutant type detection systems for plasmids was 50 copies/μL. The minimum sensitivity for the detection of nucleic acids in real dried blood spot (DBS) samples was 0.1 ng/μL. In the normal DBS DNA sample, the detection limit of the mutation abundance reached 0.78%. The specificity of the detection method was 100%, and the coefficient of variation was less than 3.36%. This approach was validated using clinical DNA extracted from 113 DBS samples of newborns. Additionally, it showed 100% agreement with bi-directional Sanger sequencing. It can be used as an optional method for the clinical detection of deafness-related genes.