It is shown that the dephasing rates are usually harmful for quantum correlations in various systems. Nevertheless, we explore that the dephasing rates in the coupled quantum wells (QWs), as a major contribution of the decay processes, can assist to generate one-way Einstein-Podolsky-Rosen (EPR) steering. By applying two strong fields to drive two dipole-allowed transitions while the other transitions are coupled with two quantized modes, the asymmetric EPR steering is possible to obtain at steady state through a single-pathway dissipation in the three-well system. According to dressed-state and Bogoliubov mode transformation, we find that the dephasing rates play a role in modifying the dressed-state populations and the dissipation rate through multiple quantum interference mechanisms. The positive effect of the dephasing rates from a nanostructure on quantum correlation is expected to find potential applications in quantum information processing.
Read full abstract