A20 is a potent anti-inflammatory protein that mediates both inflammation and ubiquitination in mammals, but the related mechanisms are not clear. In this study, we performed mass spectrometry (MS) screening, gene ontology (GO) analysis, and coimmunoprecipitation (co-IP) in a lipopolysaccharide (LPS)-induced inflammatory cell model to identify novel A20-interacting proteins. We confirmed that the E3 ubiquitin ligase Nrdp1, also known as ring finger protein 41 (RNF41), interacted with A20 in LPS-stimulated cells. Further co-IP analysis demonstrated that when A20 was knocked out, degradation-inducing K48-linked ubiquitination of inflammatory effector MyD88 was decreased, but protein interaction-mediating K63-linked ubiquitination of another inflammatory effector TBK1 was increased. Moreover, western blot experiments showed that A20 inhibition induced an increase in levels of MyD88 and phosphorylation of downstream effector proteins as well as of TBK1 and a downstream effector, while Nrdp1 inhibition induced an increase in MyD88 but a decrease in TBK1 levels. When A20 and Nrdp1 were coinhibited, no further change in MyD88 was observed, but TBK1 levels were significantly decreased compared with those upon A20 inhibition alone. Gain- and loss-of-function analyses revealed that the ZnF4 domain of A20 is required for Nrdp1 polyubiquitination. Upon LPS stimulation, the inhibition of Nrdp1 alone increased the secretion of IL-6 and TNF-α but decreased IFN-β secretion, as observed in other studies, suggesting that Nrdp1 preferentially promotes the production of IFN-β. Taken together, these results demonstrated that A20/Nrdp1 interaction is important for A20 anti-inflammation, thus revealing a novel mechanism for the anti-inflammatory effects of A20.
Read full abstract