Intracerebral hemorrhage (ICH) is associated with high mortality and neurological deficits, and concurrent hyperglycemia usually worsens clinical outcomes. Aquaporin-4 (AQP-4) is important in cerebral water movement. Our aim was to investigate the role of AQP-4 in hyperglycemic ICH. Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg) in adult Sprague-Dawley male rats. ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. One set of rats was repeatedly monitored by MRI at 1, 4, and 7 days after ICH induction so as to acquire information on the formation of hematoma and edema. Another set of rats was killed and brains were examined for differences in the degree of hemorrhage and edema, water content, blood-brain barrier destruction, and AQP-4 expression. Hyperglycemia ICH rats exhibited increased brain water content, more severe blood-brain barrier destruction, and greater vasogenic edema as seen on diffusion-weighted MRI. Significant downregulation of AQP-4 was observed in STZ-treated rats after ICH as compared with non-STZ-treated rats. Apoptosis was greater on day 1 after ICH in STZ-treated rats. The expression of AQP-4 in the brain is downregulated in hyperglycemic rats as compared with normoglycemic rats after ICH. This change is accompanied by increased vasogenic brain edema and more severe blood-brain barrier destruction.
Read full abstract