Casing or tubing leaks cause unwanted water production from oil-producing wells. Many chemical and mechanic water control technologies can be used to solve this problem, including squeezing chemical shutoff fluids into the targeted zone or using plugs, cement, packers, patches to block the leakage. Although those methods are field-proven to be effective, the mechanical solutions may require well logs to detect the water entry point in the well. Chemical methods may present environment risks. In this study, an alternative method, Downhole Water Sink, is proposed to solve the problem of unwanted water production from a casing or tubing leak. The effectiveness of this method to control water production in a well with casing or tubing leaks is tested using the Hele-Shaw experimental model. The results show that this method can control unwanted water production via dynamic control of the pressure drawdown in the reservoir. From a technical standpoint, the advantage of this technology is that it eliminates the need to run logs to locate the water entry point and does not require chemical injection into the formation. From an environmental standpoint, this technology has the circular economy elements. Because the produced water in this technology contains little or no oil, it can be reused for reinjection into the reservoir for water flooding or pressure maintenance purposes. Therefore, a production-reinjection process to recycle the produced water is established to reduce the pollution caused by discharging the wastewater into the environment.
Read full abstract