Oscillating water column (OWC) systems are water power generation plants that transform wave kinetic energy into electrical energy by a surrounded air column in a chamber that changes its pressure through the waves motion. The chamber pressure output spins a Wells turbine that is linked to a doubly fed induction generator (DFIG), flexible devices that adjust the turbine speed to increase the efficiency. However, there are different nonlinearities associated with these systems such as weather conditions, uncertainties, and turbine stalling phenomenon. In this research, a fuzzy logic controller (FLC) combined with an airflow reference generator (ARG) was designed and validated in a simulation environment to display the efficiency enhancement of an OWC system by the regulation of the turbine speed. Results show that the proposed framework not only increased the system output power, but the stalling is also avoided under different pressure profiles.