The Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory (ANL) provides a wide range of stable ion beams and radioactive beams which have contributed to our understanding of nuclear structure and reactions. Until now, most radioactive ion beams at ATLAS were produced in flight using light-ion reactions such as (p, n), (d, n), (d, p), (d,3He), and (3He,n). Within the next few months, the radioactive ion beam program at ATLAS will acquire much extended, new capabilities with the commissioning of a new facility: the CAlifornium Rare Isotope Breeder Upgrade (CARIBU). CARIBU will supply ion beams of 252Cf fission fragments, which are thermalized in a gas catcher. The singly- and doubly-charged ions extracted from the gas catcher will be mass-separated and either delivered to a low-energy experimental area, or charge bred with a modified ECR source and subsequently reaccelerated by the ATLAS facility. Properties of hundreds of these neutron-rich nuclides will be investigated using ion traps, decay stations, the newly commissioned HELical Orbit Spectrometer (HELIOS), and other available experimental equipment such as Gammasphere and the FMA. HELIOS was constructed to take advantage of rare ion beams, such as those provided by CARIBU, through light-ion transfer reactions in inverse kinematics, and represents a new approach to the study of direct reactions in inverse kinematics which avoids kinematic broadening. Experiments are currently being conducted with HELIOS, and first results with the d(28Si,p) and d(12B,p) reactions have shown excellent energy resolution.
Read full abstract