We discuss a Lipschitz truncation technique for parabolic double-phase problems of p-Laplace type in order to prove energy estimates and uniqueness results for the Dirichlet problem. Moreover, we show existence for a non-homogeneous double-phase problem. The Lipschitz truncation method is based on a Whitney-type covering result and a related partition of unity in the intrinsic geometry for the double-phase problem.
Read full abstract