Abstract

The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] if [Formula: see text], [Formula: see text] if [Formula: see text], and [Formula: see text]([Formula: see text] or [Formula: see text], [Formula: see text] or [Formula: see text]) is the discrete fractional [Formula: see text]-Laplacian. By variational methods, we discuss the existence of non-negative normalized homoclinic solutions under the conditions that the nonlinear term satisfies sublinear growth or superlinear growth conditions. In particular, we establish the compactness of the associated energy functional of the problem without weights. Our paper is the first time to deal with the existence of normalized solutions for discrete double phase problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.