Hyperspherical harmonics expansion (HHE) method has been applied to study the structure and ΛΛ dynamics for the ground and first excited states of low and medium mass double-Λ hypernuclei in the framework of core+Λ+Λ three-body model. The ΛΛ potential is chosen phenomenologically while core-Λ potential is obtained by folding the phenomenological Λ N interaction into the density distribution of the core. The parameters of this effective Λ N potential is obtained by the condition that they reproduce the experimental (or empirical) data for core-Λ subsystem. The three-body (core+Λ+Λ) Schrödinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. This ground state energy and wave function are used to construct a partner potential. The three-body Schrödinger equation is solved once again for this partner potential. According to supersymmetric quantum mechanics, the ground state energy of this potential is exactly the same as that of the first excited state of the potential used in the first step. In addition to the two-Λ separation energy for the ground and first excited state, some geometrical quantities for the ground state of double-Λ hypernuclei [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are computed. These include the ΛΛ bond energy and various r.m.s. radii.
Read full abstract