The nuclear burning process proceeds from the conservation of the most abundant element hydrogen to helium, then from helium to carbon and oxygen, and then from these to heavier elements. Some of the key reactions for the carbon and oxygen burning stages of the nucleosynthesis are 12C+12C and 16O+16O leading to all possible final states. This paper contains the experimental measurements of 12C+12C and 16O+16O angular distributions performed at the cyclotron DC-60 in Astana, Kazakhstan. The extracted beam of 16O and 12C was accelerated up to two energies 1.75 and 1.5 MeV/n and then directed to an Al2O3 target of thickness 20 μg/cm2 and a carbon self-supporting target of thickness 17.4 μg/cm2. The angular distribution calculations were performed using both the phenomenological optical potential (SPI-GENOA) code and the double folding potential (FRESCO) code.
Read full abstract