Background and purpose: The study explores basil seed mucilage as a bioadhesive carrier for naproxen sodium, demonstrating its ability to enhance solubility when administered rectally. The mucilage, derived from Ocimum basilicum seeds, showed bioadhesive properties and thermal stability, as confirmed by FTIR spectroscopy and X-ray diffraction analysis. Experimental approach: Microspheres were prepared using a double emulsion solvent evaporation technique, varying polymer ratios to optimize drug delivery. Key results: Particle size analysis revealed a range of 456±0.51 to 712±0.21 µm, with larger microspheres formed at higher mucilage concentrations due to increased viscosity. Encapsulation efficiency ranged from 45.01±0.25 % to 79.4±0.93 %, improving with higher basil/alginate ratios. The superior batch, OBM5, showed excellent mucoadhesive qualities in ex-vivo assays, attributed to the increased polymer content, facilitating interaction with rectal mucosa. SEM analysis of OBM5 indicated a spherical, monolithic structure conducive to free flow. Drug release was efficient, with OBM5 achieving 88.7±1.3 % after 7 hours, indicating a controlled release profile. Conclusion: Incorporated into polyethylene glycol (PEG) 4000 suppositories, supposetories were completely disintegrated in buffer solution within 25 minutes. The bioadhesive force of basil seed mucilage on rectal mucosa was significantly enhanced, reaching 6.44±0.58 g, correlating with mucilage concentration. These findings underscore the efficacy of basil seed mucilage as a bioadhesive biopolymer for rectal drug delivery systems.
Read full abstract