Abstract

Chlorogenic acid (CGA) is a phenolic compound widely found in plants. Several studies have shown that CGA possesses antioxidant, antibacterial, anti-inflammatory and wound healing properties. Because of their three-dimensional structure, good permeability, excellent biocompatibility and moisturizing properties, hydrogels are ideal candidates for wound dressing. The aim of the present study was to preparation and characterization of Polyvinyl alcohol (PVA) hydrogel containing CGA microspheres and evaluation its wound healing activity. The double-emulsion solvent evaporation technique was applied for preparing the CGA containing microspheres. The microspheres were characterized using scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) and subsequently incorporated in the structure of a PVA hydrogel. The effects of prepared hydrogel on NIH3T3 cell line viability were evaluated using MTT method and wound healing activity was investigated in full thickness wound model in rabbit. SEM images showed formation of homogenous CGA microspheres with diameters in the range of 1-2μm, embedded in the porous structure of the hydrogel. Infra-red results indicated successful incorporation of CGA microspheres into PVA hydrogel. The NIH3T3 cell viability percentage in CGA 2.5% hydrogel treated group significantly (p < .05) increased after 24 h and 48 h comparing to control group. In vivo studies showed that CGA hydrogel significantly (p < .001) stimulated the rate of wounds closures. Histological studies revealed that administration of CGA hydrogel significantly increased epithelialization and production of collagen fibers compared to the control group. It can be concluded that the CGA microsphere loaded PVA hydrogel has the potential for wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call