We investigate the initial value problem for the generalized double dispersion equation in any dimensions. Inspired by [28] for the hyperbolic system of first order PDEs, we develop Littlewood-Paley pointwise energy estimates for the dissipative wave equation of high-order. Furthermore, with aid of the frequency-localization Duhamel principle, we establish the global existence and optimal decay estimates of solutions in spatially critical Besov spaces. Our results could hold true for any dimensions (n≥1). Indeed, the proofs are different in case of high dimensions and low dimensions owing to interpolation tricks.
Read full abstract