<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ q $\end{document}</tex-math></inline-formula> be an odd prime power and <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{F}_q $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M3">\begin{document}$ q $\end{document}</tex-math></inline-formula> elements. In this paper, suppose ring <inline-formula><tex-math id="M4">\begin{document}$ R = \mathbb{F}_{q}+ \mu \mathbb{F}_{q}+ \nu \mathbb{F}_{q}+ \mu \nu \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ \mu \nu = \nu \mu, \mu^{2} = \mu, \nu^{2} = \nu. $\end{document}</tex-math></inline-formula> We first give a Gray map from <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> onto <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{F}_q^{4} $\end{document}</tex-math></inline-formula> and consider a decomposition of the ring <inline-formula><tex-math id="M8">\begin{document}$ R $\end{document}</tex-math></inline-formula>. Additionally, we investigate linear complementary dual (LCD) codes over the ring <inline-formula><tex-math id="M9">\begin{document}$ R $\end{document}</tex-math></inline-formula>. Some conditions for such linear codes over <inline-formula><tex-math id="M10">\begin{document}$ R $\end{document}</tex-math></inline-formula> to be linear complementary dual are given. Furthermore, based on the Artin conjecture, we get a class of good codes by calculating the total number of LCD double circulant codes over <inline-formula><tex-math id="M11">\begin{document}$ R $\end{document}</tex-math></inline-formula>.</p>
Read full abstract