BackgroundOur group has established the feasibility of using on-body electrocardiographic (ECG) sensors to detect cocaine use in the human laboratory. The purpose of the current study was to test whether ECG sensors and features are capable of discriminating cocaine use from other non-cocaine sympathomimetics. MethodsEleven subjects with cocaine use disorder wore the Zephyr BioHarness™ 3 chest band under six experimental (drug and non-drug) conditions, including 1) laboratory, intravenous cocaine self-administration, 2) after a single oral dose of methylphenidate, 3) during aerobic exercise, 4) during tobacco use (N=7 who smoked tobacco), and 5) during routine activities of daily inpatient living (unit activity). Three ECG-derived feature sets served as primary outcome measures, including 1) the RR interval (i.e., heart rate), 2) a group of ECG interval proxies (i.e., PR, QS, QT and QTc intervals), and 3) the full ECG waveform. Discriminatory power between cocaine and non-cocaine conditions for each of the three outcomes measures was expressed as the area under the receiver operating characteristics (AUROC) curve. ResultsAll three outcomes successfully discriminated cocaine use from unit activity, exercise, tobacco, and methylphenidate conditions with a mean AUROC values ranging from 0.66 to 0.99 and with least squares means values all statistically different/higher than 0.5 among all subjects [F(3, 99) = 3.38, p =0.02] and among those with tobacco use [F(4, 84) = 5.39, p = 0.0007]. ConclusionsThese preliminary results support discriminatory power of wearable ECG sensors for detecting cocaine use.