To address the low utilization of fines in iron tailings sand (IOTs), a controlled low-strength material (CLSM) was prepared from a combination of fine IOTs and red mud (RM) slag. The 7-day unconfined compressive strength (7-d UCS), slump and cost were used as evaluation indicators, and 16 sets of tests were designed with the Box-Behnken design (BBD) response surface method. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) were used to study the microscopic morphology and reaction mechanism of the CLSM samples made with the optimal ratios. The results show that the best matching ratio for the alkali-activated RM-slag-IOTs CLSM was a sand ratio of 0.797, an NaOH dose of 3.667% and a mass concentration of 80.657%, and the 7d-UCS, slump and cost indicators verified the feasibility of applying the CLSM to the base course of pavement. Alkali activation of the CLSM also showed that the RM-slag cementation system produced new substances. Internal calcium-silicate-hydrogel (C-S-H) and calcium-aluminosilicate-hydrogel (C-A-S-H) agglomerates were the main sources of strength, and hydration products were interwoven to form a dense structure with crystals as the framework and gels as fillers.