Major depressive disorder (MDD) is considered a major cause of suicide worldwide. As previous studies revealed that neuroinflammation is a significant factor in the etiology of MDD, this study proposed to unravel the possible antidepressant effect of Empagliflozin (EMPA) through targeting miRNA-134 (miR-134)/brain-derived neurotrophic factor (BDNF) and liver kinase B1 (LKB1)/adenosine 5'-monophosphate-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axes in ovariectomized (OVX) female rats. Rats were assigned randomly to four groups: Sham operation (SO), OVX, OVX + EMPA (10 mg/kg/day, p.o.), and OVX + EMPA + Dorsomorphin (DORSO) (25 μg/day/rat, i.v.). Drugs were administered for 28 days after 2 weeks of surgery. EMPA debilitated OVX-induced depressive-like behavior by mitigating the immobility time in the tail suspension test and forced swimming test. Moreover, EMPA curtailed OVX-induced alterations of serum estradiol, hippocampal serotonin, miR-134 expression, as well as BDNF. EMPA also dwindled OVX-induced changes of hippocampal p-LKB1/LKB1, p-AMPK/AMPK, SIRT1, and inflammatory markers (nuclear factor-kappa-B, interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha). Additionally, the EMPA-treated group exhibited marked improvement in different brain regions' histopathology. However, DORSO coadministration reversed most of EMPA's beneficial effects. The current study displayed the modulatory role of EMPA on miR-134/BDNF and LKB1/AMPK/SIRT1 axes, thus offering a partial explanation of its antidepressant efficacy and proposing EMPA as a novel therapeutic avenue for MDD.