Abstract
The exon junction complex (EJC) is the main mechanism by which cells select specific mRNAs for translation into protein. We hypothesized that the EJC is involved in the regulation of gene expression during the stress response in cardiac myocytes, with implications for the failing heart. In cultured rat neonatal myocytes, we examined the cellular distribution of two EJC components eukaryotic translation initiation factor 4A isoform 3 (eIF4A3) and mago nashi homologue (Mago) in response to metabolic stress. There was significant relocalization of eIF4A3 and Mago from the nucleus to cytoplasm following 18 h of hypoxia. Treating myocytes with 50 mM NaN3 for 4 h to mimic the metabolic stress induced by hypoxia also resulted in significant relocalization of eIF4A3 and Mago to the cytoplasm. To examine whether the effects of metabolic stress on the EJC proteins were dependent on the metabolic sensor AMP kinase (AMPK), we treated myocytes with 1 μM dorsomorphin (DM) in combination with NaN3. DM augmented the translocation of Mago and eIF4A3 from the nucleus to the cytoplasm. Knockdown of eIF4A3 resulted in cessation of cell contractility 96 h post-treatment and a significant reduction in the number of intact sarcomeres. Cell area was significantly reduced by both hypoxia and eIF4A3 knockdown, whilst eIF4A3 knockdown also significantly reduced nuclear size. The reduction in nuclear size is unlikely to be related to apoptosis as it was reversed in combination with hypoxia. These data suggest for the first time that eIF4A3 and potentially other EJC members play an important role in the myocyte stress response, cell contractility and morphology.
Highlights
The adult heart responds to stress by undergoing biochemical and molecular changes which result in adaptation
We studied cardiac myocytes to determine whether the subcellular distribution of two members of the exon junction complex (EJC) proteins is altered by metabolic stress
To study how metabolic stress affects EJC function, we have examined the effect of hypoxia and the respiratory inhibitor sodium azide (NaN3) in cultured neonatal myocytes
Summary
The adult heart responds to stress by undergoing biochemical and molecular changes which result in adaptation. Stresses such as haemodynamic overload or hypoxia trigger a response which leads to the expression of genes associated with early stages of heart development, called the foetal gene pattern [1]. The post-transcriptional regulation of gene expression becomes important for the selection of spliced isoforms needed in different physiological c 2017 The Author(s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.