Da Chuanxiong Formula (DCXF) is a traditional herbal prescription used for pain management. It consists of Chuanxiong Rhizoma (CR) and Gastrodiae Rhizoma (GR). Despite its long history of use, the underlying therapeutic mechanism of DCXF remains insufficiently understood. Therefore, in this study, key target genes were obtained through network pharmacology research methods and molecular docking techniques, including transient receptor potential vanilloid 1 (TRPV1), adenosine A2a receptor (ADORA2A), nuclear receptor subfamily 3 group C member 1 (NR3C1), and protein kinase C beta (PRKCB). Molecular dynamics simulations demonstrated the favorable binding between all four key genes and their corresponding compounds. Notably, chronic constriction injury (CCI) treatment resulted in a significant decrease in mechanical threshold and thermal latency period for rat foot contraction, which was ameliorated upon administration of DCXF. Furthermore, real-time quantitative reverse transcription PCR (RT-qPCR) and western blot (WB) analyses indicated an upregulation of TRPV1, ADORA2A, NR3C1, and PRKCB expression in the rat dorsal root ganglion following CCI, which was attenuated by treatment with DCXF. The expressions of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), in the rat dorsal root ganglion were assessed using ELISA, confirming consistent trends with the aforementioned findings. The results of this study offer a promising theoretical foundation for the utilization of DCXF in the treatment of neuropathic pain (NP).