In this paper, high-power phosphor-converted white-light-emitting diodes (PC-LEDs) with selected concentration and thickness of cerium-doped yttrium aluminum garnet (Ce:YAG) phosphor-doped silicones are investigated to study the thermal-degradation effect of the Ce:YAG phosphor-silicone layer. The experimental results showed that the lumen loss, chromaticity (CIE shift), and spectrum intensity reduction increase as the concentration of Ce:YAG phosphor-doped silicone increases. Although silicone degradation attributed to the final thermal degradation, it is not a dominant factor until a much thicker silicone is employed in PC-LEDs. The major degradation mechanism of the PC-LEDs results from the higher doping concentration of Ce:YAG in silicone. We found that 94% lumen loss was attributed to 5.5 wt% Ce:YAG doping and only 6% of the lumen loss was due to a 1-mm thickness of silicone degradation. However, the negligible differences of measured fluorescent lifetimes among the test samples before and after thermal aging (at 150 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">deg</sup> C for 500 h) eliminated any significant nonradioactive quenching processes that existed in the aged samples. The emission spectra indicate that a higher doping concentration in silicone causes a higher degree of loss at the emission wavelength of Ce:YAG. Therefore, minimizing any unwanted interactions, such as refractive index and thermal-expansion mismatches, between the phosphor and the silicone during thermal aging is a new direction of addressing thermal reliability for high-power PC-LEDs. From practical points of view, we found that a lower doping concentration of the Ce:YAG phosphor in thin silicone is a better choice in terms of having less thermal degradation for use in packaging of the high-power PC-LEDs modules and is essential to extend the operating lifetime of the phosphor-based white LED modules.