Raman spectroscopy, high spectral resolution luminescence, and X-ray diffraction techniques were employed to study two Ce3+ doped Y3Al5O12 single crystalline films grown by liquid phase epitaxy method onto Y3Al5O12 and Lu3Al5O12 single crystal substrates. Optical spectra were obtained with a micrometer step along the cross-sections of epitaxial structures, allowing excellent differentiation of the film, the transition layer, and the substrate of each sample. X-ray measurements demonstrate the mismatch between the lattice constants of the Y3Al5O12:Ce3+ film and its Lu3Al5O12 substrate, an effect related to different compositions. Consequently, the film grown onto Lu3Al5O12 exhibits higher residual stresses than its counterpart grown onto Y3Al5O12. This was confirmed by a mutual comparison of the Raman bands positions of the films. The luminescence spectra of both samples consist mainly of cerium 5d-4f emission, the intensity of which allows for additional study of epitaxial cross section and estimation of the size of transition layer.
Read full abstract