The elastoplastic deformation mechanisms of irradiated aluminum (Al)-doped gallium nitride (GaN) under contact loading are investigated in this work using the nanoindentation simulations, which is of great significance for understanding the mechanical properties of the Al-doped GaN and guiding the design of durable and high-performance GaN-based devices. The mechanical behaviors of the Al-doped GaN with different doping concentrations are analyzed, including the indentation hardness, Young's modulus, elastic recovery rates, phase transformations, and stress distribution. It is found that Al doping increases their hardness, Young's modulus, and elastic recovery rates, and leads to an enlargement of the phase transformation regions, which is dominated by the high coordination number (CN) phase transformations. Furthermore, the effects of low-dose neutron irradiation on their elastoplastic deformation mechanisms are studied by triggering cascade collisions within the structure. When subjected to such irradiation, structural changes occur in the Al-doped GaN, their indentation hardness, Young's modulus, and elastic recovery rates increase remarkably, and its phase transformation mechanism is changed remarkably. The dislocation behaviors of the doped and undoped GaN are different under neutron irradiation. This study is important for capturing the mechanical stability and integrity of Al-doped GaN in an irradiation environment, as well as developing GaN-based devices with superior irradiation resistance.