The luminescence properties Dy3+, Eu3+ and Sm3+ doped magnesium sodium borate glasses were investigated. The glasses samples containing the composition 30MgO-70Na2B4O7.10H2O-xRE2O3 (where RE = Dy3+, Eu3+, and Sm3+, x = 0.1, 0.5, and 1.0 mol %) are prepared by the conventional melt quenching technique. The optical properties have been evaluated using Ultraviolet-Visible Spectroscopy and Photoluminescence Spectroscopy. The X-ray Diffraction pattern was studied to confirm the amorphous nature of the prepared glass. The absorption spectra yield the most intense absorption bands and transition energy levels for Dy3+, Eu3+, and Sm3+ located at 347 nm (6H15/2 → 6P7/2), 393 nm (7F0 → 5L6), and 403 nm (6H5/2 →6P5/2) respectively. The emission spectra demonstrate the highest emission intensity centered at 463 nm (4F9/2 → 6F11/2 + 6H9/2), 612 nm (5D0 → 7FJ), and 599 nm (4G5/2 → 6H7/2) for Dy3+, Eu3+, and Sm3+ respectively. Dy3+ emits combination of blue, yellow, and red light, Eu3+ emits red light and Sm3+ emits orange to red light. The higher the content of Dy3+, Eu3+, and Sm3+, the higher the spectral or peak intensity for both absorption and emission. The findings could be useful for development of laser, light emitting diode (LED), and color displays applications. KEY WORDS: Luminescence, Borax glass, Magnesium, Dysprosium, Europium, Samarium.
Read full abstract