Alloying germanium with tin offers a means to modulate germanium's electronic structure, enabling a greater degree of control over quantum properties such as the retention of the phase or spin of the electron wave. However, the extent to which the presence of high dopant concentrations in GeSn alters these quantum behaviors is poorly understood. Here, we investigate the role of dopant concentrations on phase coherence through measurements of the weak antilocalization (WAL) effect at temperatures between 30 mK and 10 K in p-GeSn (8%) thin films, which were doped to a series of carrier densities on the order of 1012cm−2. Phase coherence and spin–orbit lengths were extracted from the magnetoconductivities using the 2D Hikami–Larkin–Nagaoka model. Phase coherence lengths peaked at 577, 593, and 737nm for the low-, mid-, and high-density samples, while upper limits on the spin–orbit lengths of less than 25nm were relatively independent of carrier density and temperature. The phase coherence lengths increased as the temperature decreased but changed only minimally with carrier density, contrary to common models of temperature-dependent inelastic scattering. Saturation of the phase coherence lengths occurred below 600mK. Based on these findings, intrinsically generated inelastic scattering mechanisms such as two-level systems or impurity band scattering likely contribute to phase decoherence in these alloys. Our results provide insight into the inelastic scattering mechanisms of GeSn, while suggesting a need for further investigation into phase decoherence mechanisms in doped group-IV alloys.
Read full abstract