Previous findings from this laboratory demonstrating changes in dopamine (DA) transporter and D2 receptors in the amygdaloid complex of subjects with major depression indicate that disruption of dopamine neurotransmission to the amygdala may contribute to behavioral symptoms associated with depression. Quantitative real-time RT-PCR was used to investigate the regional distribution of gene expression of DA receptors in the human amygdala. In addition, relative levels of mRNA of DA receptors in the basal amygdaloid nucleus were measured postmortem in subjects with major depression and normal control subjects. All five subtypes of DA receptor mRNA were detected in all amygdaloid subnuclei, although D1, D2, and D4 receptor mRNAs were more abundant than D3 and D5 mRNAs by an order of magnitude. The highest level of D1 mRNA was found in the central nucleus, whereas D2 mRNA was the most abundant in the basal nucleus. Levels of D4 mRNA were highest in the basal and central nuclei. In the basal nucleus, amounts of D4, but not D1 or D2, mRNAs were significantly higher in subjects with major depression as compared to control subjects. These findings demonstrate that the D1, D2 and D4 receptors are the major subtypes of DA receptors in the human amygdala. Elevated DA receptor gene expression in depressive subjects further implicates altered dopaminergic transmission in the amygdala in depression.
Read full abstract