Neuromelanin is a poorly understood pigment that accumulates in catecholaminergic neurons during normal aging. Electron paramagnetic resonance spectroscopy, an especially effective technique for investigating melanins, is used in the present study to show unambiguously that neuromelanin is a melanin; however, it is not well modeled by synthetic dopamine melanin and thus is an atypical melanin. Some of the unusual features of neuromelanin can be explained by postulating two distinct sources for its free radicals, the dominant one possibly derived from a precursor containing sulfur. Examination of human substantia nigra by electron paramagnetic resonance spectroscopy during the purification of neuromelanin also demonstrates, contrary to some other studies, that a portion of the paramagnetic metal ions in this tissue are bound to the pigment in situ. Combined with previous histochemical data, these observations have implications for the mechanism through which neuromelanin accumulates in vivo and are consistent with its having a cytoprotective function under normal conditions, but a cytotoxic role at advanced ages and in patients with Parkinson's disease. Other results of this study show that homogenizing tissues during the purification of any natural pigment may cause contamination of the pigment by extraneous metal ions and that subsequent incubation in hot acid, though most effective in removing metal ions and hydrolyzing proteins, leads to degradation of melanin. A purification procedure using incubation in acid at room temperature, however, is well suited for identifying and characterizing unknown natural pigments by electron paramagnetic resonance spectroscopy.