Polydopamine has the capacity to adhere to a large variety of materials and this property offers the possibility to bind nanoparticles to solid surfaces. In this work, magnetite nanoparticles were deposited on gold substrates coated with polydopamine films. The aim of this work was to investigate the effects of the composition and morphology of the PDA layers on the sticking of magnetite nanoparticles. The polydopamine coating of gold surfaces was achieved by the oxidation of alkaline solutions of dopamine with various reaction times. The length of the reaction time to form PDA was expected to influence the composition and surface roughness of the PDA films. Magnetite nanoparticles were deposited on these polydopamine films by immersing the samples in aqueous dispersions of nanoparticles. The morphology at the nanometric scale and the composition of the surfaces before and after the deposition of magnetite nanoparticles were investigated by means of AFM and XPS. We found that the amount of magnetite nanoparticles on the surface did not vary monotonically with the reaction time of PDA formation, but it was at the minimum after 20 min of reaction. This behavior may be attributed to changes in the chemical composition of the coating layer with reaction time.
Read full abstract