Abstract

Aminiature L-glutamate (L-Glu)biosensor is describedbased on Prussian blue (PB) modification with improved stability by using self-assembled monolayers (SAMs) technology and polydopamine (PDA). A gold microelectrode (AuME) was immersed in NH2(CH2)6SH-ethanol solution, forming well-defined SAMs via thiol-gold bonding chemistry which increased the number of deposited Prussian blue nanoparticles (PBNPs) and confined them tightly on the AuME surface. Then, dopamine solution was dropped onto the PBNPs surface and self-polymerized into PDA to protect the PB structure from destruction. The PDA/PB/SAMs/AuME showed improved stability through CV measurements in comparison with PB/AuME, PB/SAMs/AuME, and PDA/PB/AuME. The constructed biosensor achieved a high sensitivity of 70.683 nAµM-1cm-2 in the concentrationrange 1-476µM L-Gluwith a low LOD of 0.329µM and performed well in terms of selectivity, reproducibility, and stability. In addition, the developed biosensor was successfully applied to the determination of L-Glu in tomato juice, and the results were in good agreement with that of high-performance liquid chromatography (HPLC). Due to its excellent sensitivity, improved stability, and miniature volume, the developed biosensor not only has a promising potential for application in food sample analysis but also provides a good candidate for monitoring L-Glu level in food production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.