This study aimed to investigate the changes in retinal neurotransmitters and the role of the dopamine D2 receptor (D2R) pathway in regulating the myopic refractive state. Tricolor guinea pigs were randomly divided into two groups: the normal control group (NC) and the form-deprivation myopia group (FDM). Animals in the FDM group had their right eye covered with a balloon for 4 weeks. These two groups were further divided into two subgroups based on intravitreal injection with D2R antagonist sulpiride once a week for 3 weeks (NC, NC-Sul, FDM, and FDM-Sul groups). Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used to quantitatively detect the changes in 17 retinal neurotransmitters. Compared to the NC group, the concentrations of dopamine (DA) and γ-aminobutyric acid (GABA) decreased, while those of glutamate (Glu), 3-methoxytyramine (3-MT), and glycine increased, accompanied by an increase in myopic refraction and axial length (AL) in the FDM group. In the FDM-Sul group, glycine and DA levels were upregulated, whereas 3-MT and Glu levels were downregulated, accompanied by a decrease in myopic refraction and AL. The ratio of Glu to GABA (RGG) represents the balance between excitatory and inhibitory neurotransmitters. Notably, RGG changes occurred with corresponding AL changes, which increased in the FDM group and decreased in the FDM-Sul group. Decreased retinal DA concentration, with an increase in Glu, may be involved in the myopia progression. D2R antagonists might effectively slow myopia progression by increasing retinal DA, regulating Glu concentration to match GABA, and maintaining the balance between excitatory and inhibitory neurotransmitters.
Read full abstract