Abstract

Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor. Here, we observed that treatment with MPA resulted in dopaminergic neurotoxicity in a dose-dependent manner. MPA treatment potentiated oxidative parameters (i.e., increases in the level of reactive oxygen species, 4-hydroxynonenal, and protein carbonyl), M1 phenotype-related microglial activity, and pro-apoptotic property (i.e., increases in Bax- and cleaved caspase-3-expressions, while a decrease in Bcl-2-expression). Moreover, treatment with MPA resulted in significant impairments in dopaminergic parameters [i.e., changes in dopamine level, dopamine turnover rate, tyrosine hydroxylase (TH) levels, dopamine transporter (DAT) expression, and vesicular monoamine transporter-2 (VMAT-2) expression], and in behavioral deficits. Both dopamine D1 receptor antagonist SCH23390 and D2 receptor antagonist sulpiride protected from these neurotoxic consequences. Therefore, our results suggest that dopamine D1 and D2 receptors simultaneously mediate MPA-induced dopaminergic neurodegeneration in mice via oxidative burdens, microgliosis, and pro-apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.