Although aqueous zinc-ion batteries (ZIBs) are promising for scalable energy storage application, the actual performance of ZIBs is hampered by the irreversibility. Optimization of electrolyte composition is a relatively practical and facile way to improve coulombic efficiency (CE) and Zn plating/stripping reversibility of ZIBs. N,N-Dimethylacetamide (DMA) has a higher Gutmann donor number (DN) than that of H2 O, abundant polar groups, and economic price. Herein, a mixture electrolyte containing 10vol% DMA and ZnSO4 , which has an enhanced Zn reversibility almost fourfold higher than that of pure ZnSO4 electrolyte, is demonstrated. The density functional theory (DFT) calculation and spectroscopic analysis reveal DMA has the ability to reconstruct the solvation structure of Zn2+ and capture free water molecules via forming Hbonds. The inhibited dendrite growth on Zn anode is further clarified by an in situ characterization. This work provides a feasible way for the development of long-lifespan ZIBs.