Abstract

The boron-based ceramics namely hexagonal boron nitride (h-BN) and boron phosphate (BPO4) were synthesized and characterized by Fourier transform infrared spectroscopy and X-ray diffraction analysis. The surface properties of h-BN and BPO4 were examined by inverse gas chromatography method. The dispersive surface energy and the acidic-basic character of h-BN, and BPO4 surfaces were estimated by the retention time with probes such as n-hexane, n-heptane, n-octane, n-nonane, n-decane, acetone, ethyl acetate, dichloromethane, chloroform and tetrahydrofuran at infinite dilution region. The dispersive surface free energies calculated using both Schultz and Dorris-Gray methods, decreased linearly with increasing temperature. The specific adsorption free energy and the specific adsorption enthalpy corresponding to acid-base surface interactions were determined. By correlating with the donor and acceptor numbers of the probes, the acidic and the basic parameters of the h-BN and BPO4 were calculated. The values obtained for and parameters indicated that h-BN has a basic character, whereas BPO4 has an acidic character.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call