Studying peatland evolution and vegetation patterns in response to climate change provides valuable insights into future ecosystem trends. This study focuses on the Huanan peatland located in Changbai Mountain regions in Northeast China, utilizing phytolith analysis and stable carbon isotope composition (δ13C) to reconstruct late Holocene vegetation dynamics. Additionally, grain size, total organic carbon (TOC), and total nitrogen (TN) analyses were conducted to understand peatland development and paleoclimate since the late Holocene. The research identifies three distinct climate periods since 5500 cal yr BP: an initial warm, humid phase (5500–4000 cal yr BP) characterized by high river levels that formed lacustrine sediments; a subsequent transition to cold, dry conditions (4000–1500 cal yr BP) that initiated peat formation; and continued dry, cold conditions (1500 cal yr BP to the present) with sustained peat growth. Phytolith data reveal a dominant forest vegetation type since 2000 cal yr BP, further divided into three periods: 2000–1300 cal yr BP, marked by diverse and dense vegetation; 1300–750 cal yr BP, with declining plant cover; and 750 cal yr BP to the present, characterized by an increase in woody plants but a reduction in local grass cover.
Read full abstract